Part Number Hot Search : 
APTGT300 TPD1036F BDJ065 03033 ADG509FB 1188MK HN2010 1188MK
Product Description
Full Text Search
 

To Download MRF5S9101MBR1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  mrf5s9101nr1 mrf5s9101nbr1 mrf5s9101mr1 MRF5S9101MBR1 1 rf device data freescale semiconductor rf power field effect transistors n - channel enhancement - mode lateral mosfets designed for gsm and gsm edge base station applications with frequencies from 869 to 960 mhz. suitable for multicarrier amplifier applications. gsm application ? typical gsm performance: v dd = 26 volts, i dq = 700 ma, p out = 100 watts cw, full frequency band (869 - 894 mhz and 921 - 960 mhz) power gain - 17.5 db drain efficiency - 60% gsm edge application ? typical gsm edge performance: v dd = 28 volts, i dq = 650 ma, p out = 50 watts avg., full frequency band (869 - 894 mhz and 921 - 960 mhz) power gain ? 18 db spectral regrowth @ 400 khz offset = - 63 dbc spectral regrowth @ 600 khz offset = - 78 dbc evm ? 2.3% rms ? capable of handling 10:1 vswr, @ 26 vdc, @ 100 w cw output power, @ f = 960 mhz ? characterized with series equivalent large - signal impedance parameters ? internally matched for ease of use ? qualified up to a maximum of 32 v dd operation ? integrated esd protection ? n suffix indicates lead - free terminations ? 200 c capable plastic package ? in tape and reel. r1 suffix = 500 units per 44 mm, 13 inch reel. table 1. maximum ratings rating symbol value unit drain- source voltage v dss - 0.5, +68 vdc gate - source voltage v gs - 0.5, +15 vdc total device dissipation @ t c = 25 c derate above 25 c p d 427 2.44 w w/ c storage temperature range t stg - 65 to +150 c operating junction temperature t j 200 c table 2. thermal characteristics characteristic symbol value (1,2) unit thermal resistance, junction to case case temperature 80 c, 100 w cw case temperature 80 c, 50 w cw r jc 0.41 0.47 c/w 1. mttf calculator available at http://www.freescale.com/rf . select tools/software/application software/calculators to access the mttf calculators by product. 2. refer to an1955, thermal measurement methodology of rf power amplifiers. go to http://www.freescale.com/rf . select documentation/application notes - an1955. note - caution - mos devices are susceptible to damage from electrostatic charge. reasonable precautions in handling and packaging mos devices should be observed. document number: mrf5s9101 rev. 2, 7/2005 freescale semiconductor technical data 869 - 960 mhz, 100 w, 26 v gsm/gsm edge lateral n - channel rf power mosfets mrf5s9101nr1 mrf5s9101nbr1 mrf5s9101mr1 MRF5S9101MBR1 case 1486 - 03, style 1 to-270 wb-4 plastic mrf5s9101nr1(mr1) case 1484 - 02, style 1 to - 272 wb - 4 plastic mrf5s9101nbr1(mbr1) ? freescale semiconductor, inc., 2005. all rights reserved.
2 rf device data freescale semiconductor mrf5s9101nr1 mrf5s9101nbr1 mrf5s9101mr1 MRF5S9101MBR1 table 3. esd protection characteristics test methodology class human body model (per jesd22 - a114) 1c (minimum) machine model (per eia/jesd22 - a115) a (minimum) charge device model (per jesd22 - c101) iv (minimum) table 4. moisture sensitivity level test methodology rating package peak temperature unit per jesd 22 - a113, ipc/jedec j - std - 020 3 260 c table 5. electrical characteristics (t c = 25 c unless otherwise noted) characteristic symbol min typ max unit zero gate voltage drain leakage current (v ds = 68 vdc, v gs = 0 vdc) i dss ? ? 10 adc zero gate voltage drain leakage current (v ds = 26 vdc, v gs = 0 vdc) i dss ? ? 1 adc gate - source leakage current (v gs = 5 vdc, v ds = 0 vdc) i gss ? ? 1 adc on characteristics gate threshold voltage (v ds = 10 vdc, i d = 400 adc) v gs(th) 2 2.8 3.5 vdc gate quiescent voltage (v ds = 26 vdc, i d = 700 madc) v gs(q) ? 3.7 ? vdc drain- source on - voltage (v gs = 10 vdc, i d = 2 adc) v ds(on) ? 0.21 0.3 vdc forward transconductance (v ds = 10 vdc, i d = 6 adc) g fs ? 7 ? s dynamic characteristics (1) output capacitance (v ds = 26 vdc 30 mv(rms)ac @ 1 mhz, v gs = 0 vdc) c oss ? 70 ? pf reverse transfer capacitance (v ds = 26 vdc 30 mv(rms)ac @ 1 mhz, v gs = 0 vdc) c rss ? 2.2 ? pf functional tests (in freescale test fixture, 50 ohm system) v dd = 26 vdc, p out = 100 w, i dq = 700 ma, f = 960 mhz power gain g ps 16 17.5 19 db drain efficiency d 56 60 ? % input return loss irl ? -15 -9 db p out @ 1 db compression point, cw p1db 100 110 ? w 1. part is internally input matched. (continued)
mrf5s9101nr1 mrf5s9101nbr1 mrf5s9101mr1 MRF5S9101MBR1 3 rf device data freescale semiconductor table 5. electrical characteristics (t c = 25 c unless otherwise noted) (continued) characteristic symbol min typ max unit typical gsm edge performances (in freescale gsm edge test fixture, 50 hm system) v dd = 28 vdc, p out = 50 w avg., i dq = 650 ma, 869 mhz 4 rf device data freescale semiconductor mrf5s9101nr1 mrf5s9101nbr1 mrf5s9101mr1 MRF5S9101MBR1 z1 0.698 x 0.827 microstrip z2 0.720 x 0.788 microstrip z3 0.195 x 0.087 microstrip z4 0.524 x 0.087 microstrip z5 0.233 x 0.087 microstrip z6 0.560 x 0.087 microstrip z7 0.095 x 0.827 microstrip z8 0.472 x 0.087 microstrip z9 0.384 x 0.087 microstrip z10 1.491 x 0.087 microstrip z11, z12* 1.6 x 0.089 microstrip (quarter wave length for supply purpose) z13* 1.2 x 0.059 microstrip (quarter wave length for bias purpose) pcb taconic tlx8 - 0300, 0.030 , r = 2.55 *variable for tuning figure 1. mrf5s9101nr1(nbr1)/mr1(mbr1) 900 mhz test circuit schematic rf input rf output c1 c10 v supply z6 v bias z10 z4 c11 c21 + c7 c19 c8 c2 c5 z2 c18 c20 c13 c16 c12 z1 dut z8 r1 c4 r2 z13 r3 c17 z11 c9 c3 c6 z12 c14 c15 z5 z9 z7 z3 table 6. mrf5s9101nr1(nbr1)/mr1(mbr1) 900 mhz test circuit component designations and values part description part number manufacturer c1, c2, c3 4.7  f chip capacitors (2220) grm55er7h475ka01 murata c4, c5, c6 10 nf 200b chip capacitors 200b103mw atc c7, c8, c9 33 pf 100b chip capacitors 100b330jw atc c10, c11 22 pf 100b chip capacitors 100b220gw atc c12, c13 10 pf 100b chip capacitors 100b100gw atc c14, c15, c16, c17 8.2 pf 100b chip capacitors 100b8r2cw atc c18 5.6 pf 100b chip capacitor 100b5r6cw atc c19 4.7 pf 100b chip capacitor 100b4r7bw atc c20 3.9 pf 100b chip capacitor 100b3r9bw atc c21 220  f, 50 v electrolytic capacitor, axial 516d227m050np7b sprague r1, r2 10 k  , 1/4 w chip resistors (1206) r3 10  , 1/4 w chip resistor (1206)
mrf5s9101nr1 mrf5s9101nbr1 mrf5s9101mr1 MRF5S9101MBR1 5 rf device data freescale semiconductor figure 2. mrf5s9101nr1(nbr1)/mr1(mbr1) 900 mhz test circuit component layout c10 c12 c15 c11 c20 c13 c1 c2 c8 c9 c14 c16 c17 c19 r3 r1 c18 v gg r2 c7 c21 c5 c3 c6 v dd c4 cut out area rev 2 mrf5s9101n 900 mhz freescale has begun the transition of marking printed ci rcuit boards (pcbs) with the freescale semiconductor signature/logo. pcbs may have either motorola or freescale markings during the transition period. these changes will have no impact on form, fit or function of the current product.
6 rf device data freescale semiconductor mrf5s9101nr1 mrf5s9101nbr1 mrf5s9101mr1 MRF5S9101MBR1 typical characteristics - 900 mhz 1020 10 18 860 ?45 70 60 17 50 16 40 15 30 14 0 13 12 ?15 11 ?30 880 900 920 940 960 980 1000 g ps , power gain (db) input return loss (db) irl, f, frequency (mhz) figure 3. power gain, input return loss and drain efficiency versus frequency @ p out = 100 watts cw irl g ps v dd = 26 vdc i dq = 700 ma 1020 10 19 860 ?24 50 45 17 35 16 30 15 14 ?8 13 12 ?16 11 ? 20 880 900 920 940 960 980 1000 g ps , power gain (db) irl g ps v dd = 26 vdc i dq = 700 ma f, frequency (mhz) figure 4. power gain, input return loss and drain efficiency versus frequency @ p out = 40 watts cw 18 ?12 40 1000 14 19 1 i dq = 1500 ma 1300 ma p out , output power (watts) figure 5. power gain versus output power g ps , power gain (db) v dd = 26 vdc f = 940 mhz 1100 ma 900 ma 700 ma 500 ma 300 ma 18 17 16 15 10 100 200 14 19 0 p out , output power (watts) cw figure 6. power gain versus output power g ps , power gain (db) v dd = 12 v 16 v 24 v 28 v 32 v 18 17 16 15 20 40 60 80 100 120 140 160 180 20 v d , drain efficiency (%) input return loss (db) irl, d , drain efficiency (%) d d
mrf5s9101nr1 mrf5s9101nbr1 mrf5s9101mr1 MRF5S9101MBR1 7 rf device data freescale semiconductor typical characteristics - 900 mhz 1000 1 0 70 g ps t c = ?30  c p out , output power (watts) cw figure 7. power gain and drain efficiency versus cw output power g ps , power gain (db) v dd = 26 vdc i dq = 700 ma f = 940 mhz 25  c 85  c t c = ?30  c 25  c 85  c 100 10 60 50 40 30 20 10 13 20 19 18 17 16 15 14 980 0 3.5 900 p out = 50 w avg. f, frequency (mhz) figure 8. error vector magnitude versus frequency evm, error vector magnitude (% rms) v dd = 28 vdc i dq = 650 ma 40 w avg. 25 w avg. 3 2.5 2 1.5 1 0.5 910 920 930 940 950 960 970 d 100 0 9 1 0 60 evm p out , output power (watts) avg. figure 9. error vector magnitude and drain efficiency versus output power evm, error vector magnitude (% rms) t c = 85  c 25  c ?30  c v dd = 28 vdc i dq = 650 ma f = 940 mhz 850 640 530 320 210 10 980 ?83 ?63 900 sr 400 khz f, frequency (mhz) figure 10. spectral regrowth at 400 khz and 600 khz versus frequency spectral regrowth @ 400 khz and 600 khz (dbc) v dd = 28 vdc i dq = 650 ma f = 940 mhz ?68 ?73 ?78 910 920 930 940 950 960 970 p out = 50 w avg. sr 600 khz 25 w avg. 40 w avg. 25 w avg. 40 w avg. 50 w avg. 90 ?80 ?45 0 t c = 85  c p out , output power (watts) avg. figure 11. spectral regrowth at 400 khz versus output power spectral regrowth @ 400 khz (dbc) 25  c ?30  c ?60 ?65 ?70 10 20 30 40 50 60 70 80 ?50 ?55 ?75 v dd = 28 vdc i dq = 650 ma f = 940 mhz d , drain efficiency (%) d , drain efficiency (%) d
8 rf device data freescale semiconductor mrf5s9101nr1 mrf5s9101nbr1 mrf5s9101mr1 MRF5S9101MBR1 typical characteristics - 900 mhz 90 ?85 ?65 0 t c = 85  c p out , output power (watts) avg. figure 12. spectral regrowth @ 600 khz versus output power spectral regrowth @ 600 khz (dbc) 25  c ?30  c ?70 ?75 ?80 10 20 30 40 50 60 70 80 v dd = 28 vdc i dq = 650 ma f = 940 mhz t j , junction temperature ( c) this above graph displays calculated mttf in hours x ampere 2 drain current. life tests at elevated temperatures have correlated to better than 10% of the theoretical prediction for metal failure. divide mttf factor by i d 2 for mttf in a particular application. figure 13. mttf factor versus junction temperature 210 1.e+07 1.e+10 90 mttf factor (hours x amps 2 ) 1.e+09 1.e+08 100 110 120 130 140 150 160 170 180 190 200
mrf5s9101nr1 mrf5s9101nbr1 mrf5s9101mr1 MRF5S9101MBR1 9 rf device data freescale semiconductor figure 14. mrf5s9101nr1(nbr1)/mr1(mbr1) 800 mhz test circuit schematic z1 0.432 x 0.827 microstrip z2 0.720 x 0.788 microstrip z3 0.195 x 0.087 microstrip z4 0.584 x 0.087 microstrip z5 0.173 x 0.087 microstrip z6 0.560 x 0.087 microstrip z7 0.378 x 0.827 microstrip z8 0.279 x 0.087 microstrip z9 0.193 x 0.087 microstrip z10 0.897 x 0.087 microstrip z11 1.161 x 0.087 microstrip z12, z13* 1.6 x 0.089 microstrip (quarter wave length for supply purpose) z14* 1.2 x 0.059 microstrip (quarter wave length for bias purpose) pcb taconic tlx8 - 0300, 0.030 , r = 2.55 *variable for tuning rf input rf output c1 c10 v supply z6 v bias z11 c11 c21 + c7 c19 c8 c2 c5 z2 c13 c16 c12 z1 dut z8 r1 c4 r2 z14 r3 c17 z12 c9 c3 c6 z13 c14 c15 c22 z3 z5 z4 c18 c20 z7 z10 z9 table 7. mrf5s9101nr1(nbr1)/mr1(mbr1) 800 mhz test circuit component designations and values part description part number manufacturer c1, c2, c3 4.7  f chip capacitors (2220) grm55er7h475ka01 murata c4, c5, c6 10 nf 200b chip capacitors 200b103mw atc c7, c8, c9 33 pf 100b chip capacitors 100b330jw atc c10, c11 22 pf 100b chip capacitors 100b220gw atc c12, c13, c17 10 pf 100b chip capacitors 100b100gw atc c14, c15 8.2 pf 100b chip capacitors 100b8r2cw atc c16, c22 6.8 pf 100b chip capacitors 100b6r8cw atc c18 5.6 pf 100b chip capacitor 100b5r6cw atc c19, c20 2.7 pf 100b chip capacitors 100b2r7bw atc c21 220  f, 50 v electrolytic capacitor, axial 516d227m050np7b sprague r1, r2 10 k  , 1/4 w chip resistors (1206) r3 10  , 1/4 w chip resistor (1206)
10 rf device data freescale semiconductor mrf5s9101nr1 mrf5s9101nbr1 mrf5s9101mr1 MRF5S9101MBR1 figure 15. mrf5s9101nr1(nbr1)/mr1(mbr1) 800 mhz test circuit component layout cut out area c1 v gg 800 mhz mrf5s9101n rev 2 v dd r2 r1 c4 c7 r3 c16 c17 c10 c22 c19 c21 c8 c5 c2 c14 c13 c11 c18 c20 c12 c15 c9 c6 c3 freescale has begun the transition of marking printed ci rcuit boards (pcbs) with the freescale semiconductor signature/logo. pcbs may have either motorola or freescale markings during the transition period. these changes will have no impact on form, fit or function of the current product.
mrf5s9101nr1 mrf5s9101nbr1 mrf5s9101mr1 MRF5S9101MBR1 11 rf device data freescale semiconductor typical characteristics - 800 mhz 940 10 20 820 ?20 65 19 60 18 55 17 50 16 45 15 ?10 14 ?12 13 ?14 12 ?16 11 ? 18 830 840 850 860 870 880 890 900 910 920 930 f, frequency (mhz) figure 16. power gain, input return loss and drain efficiency versus frequency @ p out = 100 w cw g ps , power gain (db) irl g ps v dd = 26 vdc i dq = 700 ma 940 10 20 820 ?20 45 irl g ps f, frequency (mhz) figure 17. power gain, input return loss and drain efficiency versus frequency @ p out = 40 w cw g ps , power gain (db) v dd = 26 vdc i dq = 700 ma 19 40 18 35 17 30 16 25 15 ?10 14 ?12 13 ?14 12 ?16 11 ? 18 830 840 850 860 870 880 890 900 910 920 930 910 0 3.5 850 p out = 50 w avg. f, frequency (mhz) figure 18. error vector magnitude versus frequency v dd = 28 vdc i dq = 650 ma evm, error vector magnitude (% rms) 3 2.5 2 1.5 1 0.5 860 860 870 880 890 900 40 w avg. 25 w avg. 100 0 9 1 0 60 p out , output power (watts) avg. figure 19. error vector magnitude and drain efficiency versus output power v dd = 28 vdc i dq = 650 ma f = 880 mhz evm , drain efficiency (%) evm, error vector magnitude (% rms) 850 640 530 320 210 10 t c = 25  c input return loss (db) irl, d , drain efficiency (%) d input return loss (db) irl, d , drain efficiency (%) d
12 rf device data freescale semiconductor mrf5s9101nr1 mrf5s9101nbr1 mrf5s9101mr1 MRF5S9101MBR1 typical characteristics - 800 mhz 910 ?82 ?64 850 sr 400 khz p out = 50 w avg. f, frequency (mhz) figure 20. spectral regrowth at 400 khz and 600 khz versus frequency spectral regrowth @ 400 khz and 600 khz (dbc) sr 600 khz 40 w avg. 25 w avg. p out = 50 w avg. 40 w avg. 25 w avg. ?66 ?68 ?70 ?72 ?74 ?76 ?78 ?80 860 870 880 900 890 v dd = 28 vdc i dq = 650 ma 90 ?80 ?45 0 t c = 25  c p out , output power (watts) avg. figure 21. spectral regrowth at 400 khz versus output power v dd = 28 vdc i dq = 650 ma f = 880 mhz spectral regrowth @ 400 khz (dbc) 10 20 30 40 50 60 70 80 ?50 ?55 ?60 ?65 ?70 ?75 90 ?85 ?65 0 t c = 25  c p out , output power (watts) avg. figure 22. spectral regrowth at 600 khz versus output power v dd = 28 vdc i dq = 650 ma f = 880 mhz spectral regrowth @ 400 khz (dbc) ?70 ?75 ?80 10 20 30 40 50 60 70 80
mrf5s9101nr1 mrf5s9101nbr1 mrf5s9101mr1 MRF5S9101MBR1 13 rf device data freescale semiconductor figure 23. series equivalent source and load impedance f mhz z source ? z load ? 845 865 4.29 - j2.23 2.72 - j0.96 3.94 - j1.24 1.15 - j0.04 1.05 - j0.10 1.02 - j0.07 v dd = 26 vdc, i dq = 700 ma, p out = 100 w cw z o = 5 ? f = 990 mhz f = 990 mhz f = 845 mhz f = 845 mhz 890 920 1.96 - j1.02 1.03 - j0.15 z load z source z source = test circuit impedance as measured from gate to ground. z load = test circuit impedance as measured from drain to ground. z source z load input matching network device under test output matching network 1.58 - j1.43 1.03 - j0.05 960 990 1.27 - j1.54 0.73 - j0.07
14 rf device data freescale semiconductor mrf5s9101nr1 mrf5s9101nbr1 mrf5s9101mr1 MRF5S9101MBR1 package dimensions case 1486 - 03 issue c datum plane bottom view a1 2x d1 e3 e1 d3 e4 a2 pin 5 note 8 a b c h drain lead d a m aaa c 4x b1 2x d2 notes: 1. controlling dimension: inch. 2. interpret dimensions and tolerances per asme y14.5m?1994. 3. datum plane ?h? is located at the top of lead and is coincident with the lead where the lead exits the plastic body at the top of the parting line. 4. dimensions ? d" and ? e1" do not include mold protrusion. allowable protrusion is .006 per side. dimensions ? d" and ? e1" do include mold mismatch and are deter? mined at datum plane ?h?. 5. dimension ? b1" does not include dambar protrusion. allowable dambar protrusion shall be .005 total in excess of the ? b1" dimension at maximum material condition. 6. datums ?a? and ?b? to be determined at datum plane ?h?. 7. dimension a2 applies within zone ? j" only. 8. hatching represents the exposed area of the heat slug. c1 f zone j e2 2x a dim a min max min max millimeters .100 .104 2.54 2.64 inches a1 .039 .043 0.99 1.09 a2 .040 .042 1.02 1.07 d .712 .720 18.08 18.29 d1 .688 .692 17.48 17.58 d2 .011 .019 0.28 0.48 d3 .600 ? ? ? 15.24 ? ? ? e .551 .559 14 14.2 e1 .353 .357 8.97 9.07 e2 .132 .140 3.35 3.56 e3 .124 .132 3.15 3.35 e4 .270 ? ? ? 6.86 ? ? ? f b1 .164 .170 4.17 4.32 c1 .007 .011 0.18 0.28 e .025 bsc .106 bsc 0.64 bsc 2.69 bsc 1 style 1: pin 1. drain 2. drain 3. gate 4. gate 5. source aaa .004 0.10 gate lead 4x e 2x e seating plane 4 2 3 ?????? ?????? ?????? ?????? ?????? ?????? ?????? ?????? ?????? ?????? ?????? ?????? ?????? e5 .346 .350 8.79 8.89 to - 270 wb - 4 plastic mrf5s9101nr1(mr1)
mrf5s9101nr1 mrf5s9101nbr1 mrf5s9101mr1 MRF5S9101MBR1 15 rf device data freescale semiconductor to - 272 wb - 4 plastic mrf5s9101nbr1(mbr1) notes: 1. controlling dimension: inch. 2. interpret dimensions and tolerances per asme y14.5m?1994. 3. datum plane ?h? is located at top of lead and is coincident with the lead where the lead exits the plastic body at the top of the parting line. 4. dimensions "d" and "e1" do not include mold protrusion. allowable protrusion is .006 per side. dimensions "d" and "e1" do include mold mismatch and are determined at datum plane ?h?. 5. dimension "b1" does not include dambar protrusion. allowable dambar protrusion shall be .005 total in excess of the "b1" dimension at maximum material condition. 6. datums ?a? and ?b? to be determined at datum plane ?h?. 7. dimension a2 applies within zone "j" only. 8. hatching represents the exposed area of the heat slug. datum plane y y dim a min max min max millimeters .100 .104 2.54 2.64 inches d2 .600 ? ? ? 15.24 ? ? ? e2 .270 ? ? ? 6.86 ? ? ? d .928 .932 23.57 23.67 d1 e .551 .559 14 14.2 e1 .353 .357 8.97 9.07 b1 .164 .170 4.17 4.32 c1 .007 .011 .18 .28 e r1 .063 .068 1.60 1.73 aaa .106 bsc .004 2.69 bsc .10 b a e1 d 4x b1 d1 e gate lead m aaa ca m aaa ca d2 e2 view y - y 4x e a1 .039 .043 0.99 1.09 f a2 .040 .042 1.02 1.07 .025 bsc 0.64 bsc a1 c h c1 a zone j seating plane .810 bsc 20.57 bsc pin 5 2x r1 b drain lead f a2 7 note 8 1 2 3 4 style 1: pin 1. drain 2. drain 3. gate 4. gate 5. source e3 e3 e3 .346 .350 8.79 8.89
16 rf device data freescale semiconductor mrf5s9101nr1 mrf5s9101nbr1 mrf5s9101mr1 MRF5S9101MBR1 information in this document is provided solely to enable system and software implementers to use freescale semiconductor products. there are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. freescale semiconductor reserves the right to make changes without further notice to any products herein. freescale semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does freescale semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ?typical? parameters that may be provided in freescale semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including ?typicals?, must be validated for each customer application by customer?s technical experts. freescale semiconductor does not convey any license under its patent rights nor the rights of others. freescale semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the freescale semiconductor product could create a situation where personal injury or death may occur. should buyer purchase or use freescale semiconductor products for any such unintended or unauthorized application, buyer shall indemnify and hold freescale semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that freescale semiconductor was negligent regarding the design or manufacture of the part. freescale  and the freescale logo are trademarks of freescale semiconductor, inc. all other product or service names are the property of their respective owners. ? freescale semiconductor, inc. 2005. all rights reserved. how to reach us: home page: www.freescale.com e - mail: support@freescale.com usa/europe or locations not listed: freescale semiconductor technical information center, ch370 1300 n. alma school road chandler, arizona 85224 +1 - 800- 521- 6274 or +1 - 480- 768- 2130 support@freescale.com europe, middle east, and africa: freescale halbleiter deutschland gmbh technical information center schatzbogen 7 81829 muenchen, germany +44 1296 380 456 (english) +46 8 52200080 (english) +49 89 92103 559 (german) +33 1 69 35 48 48 (french) support@freescale.com japan: freescale semiconductor japan ltd. headquarters arco tower 15f 1 - 8 - 1, shimo - meguro, meguro - ku, tokyo 153 - 0064 japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com asia/pacific: freescale semiconductor hong kong ltd. technical information center 2 dai king street tai po industrial estate tai po, n.t., hong kong +800 2666 8080 support.asia@freescale.com for literature requests only: freescale semiconductor literature distribution center p.o. box 5405 denver, colorado 80217 1 - 800- 441- 2447 or 303 - 675- 2140 fax: 303 - 675- 2150 ldcforfreescalesemiconductor@hibbertgroup.com document number: mrf5s9101 rev. 2, 7/2005


▲Up To Search▲   

 
Price & Availability of MRF5S9101MBR1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X